
= NASA-C_R-1936_.3
j -- _ =i : >'_
,_ - :--__--7_ _: =: i: '_ "_- Z -_ _ " ::" __

= Advanced Software

_ _'_-_ -=--::____: z)e_pment Workstation

/ X_ _/- c___..

k..

k

o
,..4

_" N

I

Z
I....

Knowledge Base Methodology-
Methodology for First Engineering

Script Language (ESL) Knowledge Base

.__ Kumar Peeris

- J _-i-]" University of Houston-Clear Lake
Michel izygon

Barrios Technology, Inc.

............ May 31, 1993

-.e
Ul ,,t

0
_-- ,,0
L; O0
C:

o _Cooperatlve Agreement NCC 9'16

..,_...... Research Activity No. SR.02

NASA Johnson Space Center

_ Informatipn Systems Directorate

Technology Development Division

© ©

=

Research Institute for Computing and Information Systems

University of Houston-Ciear Lake

II

__ZL:: ::L : ...

: ?: 2:

_FINAL REPORT

m

r

w

)ncept

21ear Lake es_tabllshe _ the Research Institute for

i Systems (RICIS) in 1986 to encourage the NASA
;) and local industry to actively support research

rmUon sciences. As part of this endeavor, UHCL

a JSC to jointly define and manage an Integrated
nced data processing technology needed for JSC's

]minlstrative, engineering and science responsl-
atered Into a continuing cooperative agreement
y 1986, to Jointly plan and execute such research
dly, under Cooperative Agreement NCC 9-16,

I facilities are shared by the two Institutions to

to conduct, coordinate, and disseminate research: _:

ati0n In computing and informaUon systems to

emment, industry, community and academia.

f UHCL and its gateway affl!!ates to research and
-'s and publicaffons on topics of mutual interest

rchers. Within UHCL, the mission is being
Ilsclplinary Involvement of faculty and students
is: Business and Public Administration, Educa-
_IumaniUes. _d Natural and App_ie_Sclenees.

industry in a companion program. T_als program

research and advanced development needs of

d re|ationshtps with other universities and re-

g common research Interests, to provide addt-

conduct needed research. For example, UHCL

_tnershtp with Texas A&M University to help
-1 education programs, while other research

la the "gateway" concepL

to find the best match of sponsors, researchers

vance knowledge in the compu ring and informa-
kgJolntly with its sponsors, advises on research

sis for conducting the research, provides tech-

_port to coordinate the research and integrates

sis ofUHCL, NASA/JSC and industry.

e-

d

- 1

=all
=i-I

&7
_±±= = =

The RICIS C,

The University oi Houstorr

Comptittia-g Knd I-nformatic
Johnson Space Center (JS

in the computing and tnfol

proposed a partnership Wll
program of research in advz

main missions, including z
bflities. JSC agreed and c

with UHCL beginning in M_
through RICIS. Addition

computing and education;
conduct the research.

The UHCL/r_cts mission 5
and professional leveI edui

serve the needs of the go,
RICIS combines resources

develop materials, prototy_

to its sponsors and res_

implemented through inter
from each of the four scho¢

Lion, Human Sciences and
RICIS also collaborates witl"

Is focused on serving the
industry.

Moreover, UHCL establlsh¢

search organizations, havi_

tlonal sources of expertise i

has entered into a special
oversee RICIS research a_

organizations are Involved

A major role of RICIS then it
and research objectives to a_

Uon sciences. RICIS, worki

needs, recommends princli
nical and administrative su

technical results into the gt

__=

-4m_

Advanced Software Development Workstation

FINAL REPORT:

Knowledge Base Methodology -

Methodology for First Engineering Script Language (ESL)
Knowledge Base

w

Y

Prepared for
NASA-Johnson Space Center

May 31, 1993

q[

w

Submitted by
Dr. Michel Izygon

Barrios Technology Inc.
1331 Gemini Av.

Houston, TEXAS 77058

w

ABSTRACT

This report explains some of the concepts of the ESL prototype, and summarizes
some of the lessons learned in using the prototype for implementing the Flight Mechanics

Tool Kit (FMToolKit) series of Ada programs.

j_

mli

: = _ ii
III

m

I

J]

--- z

I

V

V'-

1ira

Ili

,rap

m
w

M
w

RB

Q.

= =

RICIS Preface

u

r'_,

m

V_

m

m

u

i

m
m

!
l

m

1
km

W

This research was conducted under auspices of the Research Institute for Computing and

Information Systems by Kumar Peeris of the University of Houston-Clear Lake and Dr.

Michel Izygon of Barrios Technology, Inc. Dr. Rodney L. Bown served as the RICIS
research coordinator.

Funding was provided by the Information Systems Directorate, NASA/JSC through

Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and the

University of Houston-Clear Lake. The NASA research coordinator for this activity was

Ernest M. Fridge HI, Deputy Chief of the Software Technology Branch, Information
Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and should

not be interpreted as representative of the official policies, either express or implied, of
UHCL, RICIS, NASA or the United States Government.

ml

m
tR

m

I

: zT_ : :

7 :

ulp

Z
I

'Kin

I1

wl

mz

W

i

rS

_m
I

m

,wv

i

I

ir

m

II

u

J

i

aND

_J

V

T_

y-

w

2.1

CONTENTS

Reuse: Background and Concepts .. 1

Description of the ESL Reuse Method .. 4

Methods used to reengineer FM tool kit code to ESL Reusable
Method ... 13

1.2.1 Analysis of FM Tool Kit Applications .. 14

1.2.2 Modifications and Decomposition of Primitives 24

1.2.3 Packages COMMON_MODULES, DATA_TYPES, and

DATA_TYPES_SPEC .. 25

1.2.4 Further Modifications .. 26

1.2.5 Modification of procedure COMPUTE_TRAJECTORY_DATA 29

1.2.6 Application BEST1WAY ... 38

1.2.7 Application POWRSWNG ... 38
1.2.8 Module DATA_MATRIX_INTEGER ... 38

1.2.9 Complete ESL object graphs for all four applications 38

Lessons Learned About Current ESL Tool ... 43

tJ

,,j

_z

U

F

1.1.1

1.1.2

1 1.3

1 1.4

1 1.5

12.1

1 2.2

1 2.3a

1.2.3b

1.2.3c

1.2.4

1.2.5

1.2.6a

1.2.6b

1.2.7

1.2.8

1.2.9

1.2.10

1.2.11

1.2.12

1.2.13

1.2.14

1.2.15

1.2.16

1.2.17

1.2.18

1.2.19

1.2.20

1.2.21

1.2.22

1.2.23

1.2.24

1.2.25

1.2.26

1.2.27

1.2.28

1.2.29

1.2.30

FIGURES

Building an application program with the help of a Parts

Composition System. :.....- :....................... 7

A typical ESL graph .. 9

Hierarchical decomposition of ESL graphs .. 9

An ESL graph example I 1

ESL subgraph for INNER_LOOP ... 1 1

Main program for INTRPLAN ... 1 4

Main progr_for!P__R ,--7" v"',"'"",,'," ,......, 1 5

Modified main program for IPCAPTUR .. 1 5

Modified main program for INTRPLAN .. 1 6

Procedure INNER_LOOP,,..,, 1 6

Modified main program for IPCAPTUR .. 1 7

Added computational statements inside the WHILE loop 1 7

Modified main program for IPCAPTUR .. 1 8

Modified main program for INTRPLAN .. 1 8

Procedure MAIN_LOOP .. 1 8

ESL graphical representation of the main program for
INTRPLAN or IPCAPTUR ... 1 9

Modified procedure MAIN_LOOP .. 1 9

Procedure SET_CONTROL .. 2 0

Modified procedure INNER_LOOP ... 2 0

The ESL object graph for subprogram MAINLOOP 2 1

The ESL object graph for subprogram INNERLOOP 2 1

ESL object graph for main program of POWRSWNG 2 2

The ESL object graph for subprogram MAIN_LOOP 2 3

The ESL object graph for subprogram iNNER_LOOP of
POWRSWNG .. 2 3

COMPUTE_POSITION_AND_VELOCITY_OF_HOME_PLANET 2 6

COMPUTE_POS ITION_AND_VELOCITY_OF_TARGET_PLANET 2 6

COMPUTE_POSrrlON_AND_VELOC1TY_OF_SWINGBY_PLANET 2 7

COMPUTE_POSITION_AND_VELOCITY_OF_PLANET 2 7

ESL Object graph for subprogram MAIN_LOOP 2 8

ESL object graph for subprogram INNER_LOOP 2 9

Procedure COMPUTE_IRAJECTORY_DATA ... 3 0

Procedure EXCEPTION_HANDLER_I_!,,,,_.,_..,.,,,, 3 1

Modified Procedure COMPUTE_TRAJECTORY_DATA 3 2

ESL object diagram for COMPUTE_TRAJECTORY_DATA 3 3

COMPUTE_PLANETOCENTRIC_DEPARTURE_DATA 3 4

COMPUTE_PLANETOCENTRIC_ARRIVAL_DATA 3 4

COMPUTE_PLANETOCENTRIC_ARRIVAL_OR_DEPARTURE-DATA.- 3 5

COMPU'IE_TRAJECTORY_FOR_FIRST_HELIOC_NTRIC_LEG 3 6

ii

ql)

i

:ll

I

II

iB

m
m

D

l

wll

ql)

w_

::z

i

tl
II
ii
I

g

i

r

V

1.2.33

1.2.34

1.2.35

1.2.36

FIGURES (cont'd.)

COMPUTE_TRAJECTORY_FOR_SECOND_HELIOCENTRIC_I-EG 3 7

COMPUTE_'IRAJECTORY_FOR_FIRST_AND_SECOND-

HELIOCENTRIC_LEG ... 3 7

ESL object graph for POWRSWING .. 3 9

ESL object graph for INTRPLAN .. 4 0

ESL object graph for IPCAPTUR .. 4 1

ESL object graph for BEST1WAY .. 4 2

=

w

L2-
-.---

p._,'

v

L_

v

111

FINAL REPORT:

KNOWLEDGE BASE METHODOLOGY .

METHODOLOGY FOR FIRST ENGINEERING SCRIPT LANGUAGE
(ESL) KNOWLEDGE BASE

by

Kumar Peeris (UHCL) and Michel E. Izygon _(Barrios)

Reuse : Background and concepts.

Software Reuse is one of the technologies that is currently

presented as being able to solve the so-called "Software Crisis". In

this section, we will describe some of the key concepts of this

technology, the different approaches to reusability, some of the

issues related to it, and we will try to present how the Engineering

Script Language (ESL) implement the reuse paradigm.

Reuse Concepts

The primary goal of reusing software components is that

software can be developed faster, cheaper and with higher quality.
Though, reuse is not automatic and can not just happen. It has to be

carefully engineered. For example a component needs to be easily
understandable in order to be reused, and it has also to be malleable

enough to fit into different applications. In fact the software

development process is deeply affected when reuse is being applied.
During component development, a serious effort has to be directed

toward making these components as reusable as possible. This

implies defining reuse coding style guidelines and applying them to

any new component to create as well as to any old component to
modify. These guidelines should point out the favorable reuse

features and may apply to naming conventions, module size and

cohesion, internal documentation, etc... During application

development, effort is shifted from writing new code toward finding

and eventually modifying existing pieces of code, then assembling
them together. We see here that reuse is not free, and therefore has
to be carefully managed.

Approaches to Reuse

There are two different approaches to reusing software

components: Adaptive Reuse and Compositional Reuse. Their
characteristics are as follow:

• Adaptive Reuse

_lmm

J

[]

m

U

,lure

_%J

"W

w

I

v

III

i

H
= =

v

.'x ± .

U _

i

Iij

m_

im

U

m

.u

E
m

B
!
U

I

With this approach, components are templates or patterns and are

changed each time they are used.

• Compositional Reuse

components are atomic and don't change when they are used.

Issues / Dilemmas

The operational problems of reusability are the following:

• finding components

• understanding components

• modifying components

• composing components

When a programmer has to develop a piece of code, the first

thing he does is to look in the library of available components to

check if there is one that matches his needs. This search process

needs to be able to find not only the exact match, but also the "close

enough" type of components if the ideal one does not exist. The

difficulty of this step is directly linked to the breadth of the library

of components. The more specific are the components, the more

numerous they will be in the library, and the more difficult it is to

find the appropriate one. This aspect of the reuse process is dealt

with library systems.

Understanding a component is the next step the programmer

will go through, in order to be able to use properly the component he

found during the search process. If modifications are necessary, i.e. if

the component does not match exactly the need of the programmer,

the understanding is even more important as he will need to enter

into the code and change it. For this understanding process to be

successful, there needs to be a lot of emphasis on documentation

during design and coding of any reusable component.

Modification of components is the step that seems to be the less

automatizable. The programmer has to do his work at customizing

the component to his needs. The issue that is related to this step is

that we can foresee that many components may be spawned out of a

common root component in order to customize it to the different

needs of different programmers. The only way to prevent the library

to get out of control is to build components that are generic enough

to be applied to many different situation.

Composing components is the step that is completely specific to

the reuse-based software development process. Once all the needed

components have been found, eventually modified, or developed

from scratch, there needs to be a framework where the programmer

2

can specify how to compose these components together to build the
targeted application.

ESL vs Reuse
The ESL concept of Reuse is based on the following principles:

ESL is targeted toward domain specialists who do not have a
sufficient knowledge of Ada programming language to develop code
in their domain. The tool would allow them to graphically develop an
application from the available pieces of code stored in a software
component library. We should point out here, that the ESL system
does not address the issue of developing the elementary components
that are populating the library. It takes as a first assumption that
these components exist, that they are medium to gross grain
components written in Ada, and that they were input in the
knowledge base with the proper amount of information to allow their
retrieval and their correct use. Based on these assumptions, ESL
contains the different mechanisms that allows an application
developer to build the program he needs from the stored
components. Let us now focus on the different pa_ of ESL:
• The first part of ESL deals with the storage of the components. The
system is built on a knowledge base written in ART-IM. This
knowledge base contains the important information about the
components such as what it does, what the inputs and outputs are, if
the component is composed of other components or if it is an
elementary one.
• The second part of ESL addresses the issue of retrieving a

component. ESL has a Case Base Reasoning (CBR) engine that allows to

query the library for components having some similarities with the

needed component. The system will present a list of components

belonging to the same class, ordered according to the number of

identical attributes values. The application developer can refine his

query by analyzing the closest component, changing the unfit

attributes and then resubmitting the query with the added

information.

• The third part of ESL focus on assembling the retrieved

components in order to build an application. A graphical editor

allows the application developer to graphically link the desired

components.

• The fourth part of ESL is the code generator. From the graphical

representation of the flow of inputs and triggers through the
different components, ESL generates an Ada main program that

contains the calls to the different routines chosen by the user.

3

II

m

i

v

m
m

m
m

W_

I

I
m

m

|
m

m
m

l

V

II

11

L

V

---4

IK2

r _

u

=

1.1 Description of the ESL Reuse method

The Engineering Script Language (ESL) is a language designed to

allow non programming users to write High Order Language (HOL)

programs by drawing directed graphs to represent the program and

having the system generate the corresponding program in HOL. For

the implementation of ESL proposed, the HOL code to be generated
will be Ada.

The building blocks for directed graphs are nodes and connectors.

Nodes are visually represented as labeled icons (e.g., rectangles or

circles) and have input and output ports which are used to receive

produce data. On a graph, an output port from one node may be

connected to an input node on another node via a connector. Visually,

all connectors passing data between two nodes are represented as a

single arrow connecting the icons representing the nodes. In addition,

a graph itself can have input ports and Output ports which are

connected to ports or nodes on the graph. Visually, the set of all

graph input ports is represented by a single icon on the left of the

editor window. Each arrow from this icon to a node on the graph

represents a group of connectors. Similarly, the set of all graph

output ports is represented visually as a single icon on the right of
the editor window.

E_ch node on a graph may represent a primitive procedure or

function in the HOL (i.e., a primitive subprogram), an ESL control or

data-passing mechanism, or another graph. When a node is a

primitive subprogram node, the node's ports represent the

subprogram's parameters and, if applicable, its return value.

m

Y

w

Node Objects

There are several classes of node objects: the subprogram node,

(which includes procedure-node, function-node, and subgraph-node

objects), the Merge node, the Replicator node, and the control nodes

(If, Select, and Iterator).

A subprogram-node object is used to represent a procedure or

function coded in the HOL or to represent a graph previously created

through the ESL editor. Each subprogram-node object points to a

4

subprogram object. Subprogram objects are objects visible through

the ACCESS tools panel and included in the ACCESS taxonomy.

Subprogram objects have corresponding ports_ Ports of a procedure

or a function object represent parameters of the corresponding

procedure or function or the return value of the function. Ports of a

graph object, called graph ports, are mapped to ports on nodes of the

graph by connector objects.

Implementation Objects

An implementation object contains information about how a

subprogram object is implemented. The merge, replicator, If, Select

and Iterator nodes each have an implicit implementation and do not

have an associated implementation object. There are three classes of

implementation objects.: In line, separately compiled procedure, and

package.

In line implementation objects are appropriat e only for graph

objects. This type of implementation means that when a subgraph

node is part of a larger graph for which code is generated, the code

corresponding to the subgraph node is generated online.

Implementat_0n objects whose type is separately compiled procedure

are valid for all subprogram objects. Such an implementation object

indicates that _thesubprogram is implemente d a s a separately

compiled Ada procedure. For a separately compiled procedure to be

called by an Ada program, the program must be first "with" the

procedure; then the procedure may be called.

Package implementation objects are valid for subprograms of
procedure or function type. Such an implementation object indicates

that the subprogram has been implemented as a visible function in

an Ada package. For a procedure or function !n a package to be called

by an Ada program, the program must first "with" the package; then

the procedure may be called using the "package.procedure" notation.

U

i

lip

m
W

!

t

t
!

|
m

II
m

m

i

m

zm

u

v

W

!

W

v

IE

w

w

mlL

_.z

w

Object

The

Hierarchy

following is the hierarchy of objects in ESL system.

subprogram

" primitive subprogram
function

procedure

graph
node

port

subprogram node
primitive subprogram node

procedure node
function node

subgraph node

merge node

replicator node
control node

if node

select node

iterator node

graph port

procedure port

function port

node port

connector group

connector

implementation
in line implementation

separately complied procedure implementation

package implementation

data type

6

_pplication Developers IUI

I I
Catalog l -__

Domain_Specific_

Knowledg_

Engineer _

Reusable

Parts +

Metadata

Jm

Reusable

ESL

Subgraph
i

ESL editor

Menus

_plication Source Code

Complete

Application
With

All required

Input Data

Application

_ Metadata
About

Input

User41 tUl

1_ LibraryCatelog
+

IUI

Knowledge! 4

Engineer IReusable

lData
ISets

m

E

E
R

w

zm
!
l

w

f

J
ql

m

J

Fig. 1.1.1 Building an Application Program with the help of a Parts Composition System

Figure l.].l shows the various steps that would be involved in

building a complete application with the help of a Parts Composition

System (PCS), as currently envisioned. A library of procedures (or

more generically, primitives) containing software parts that are

needed by most application programs within the domain of interest

is opened and scanned. If this library contains most of the required

primitives, then the application developer may select to use it;

otherwise, additional libraries may be searched.

Depending on the decisions of the libraries' management
organizations, application developers may or may not be allowed to

create modified versions of primitives in the libraries. However, the

development, organization, and maintenance of these domain-specific

libraries is primarily the responsibility of the software development

engineers and not the job of the application developers, who may

well be aerospace engineers with minimal programming experience.

The software development engineers receive part specifications from

the application developers and provide implementations to populate

required libraries. If well managed, this seperation of roles helps to

limit the amount of domain expertise that the software engineer

must have and also the amount of programming experience that the
application "developer must have.

7

W

u

v

J

I

Z

L--

U

all

I

m

m

F

The construction of primitives can be done using the Computer-

Aided Software Engineering (CASE) tools. However, a useful, well-

maintained library of reusable parts consists of more than a

disorganized jumble of parts. A librarian and library tools are clearly

required. A librarian must build and maintain a PCS knowledge base

using tools that extract the necessary metadata from each primitive

(such as input, output, purpose, and constraints) and then catalog this

information with the knowledge base's schemas. The cataloging

process includes the assignment of each-primitive to a specific

knowledge base class. Careful development of a meaningful class

structure is essential to the usefulness of the library's catalog and

one of the most challenging tasks of the knowledge engineer. Special

displays may also be required for some classes of primitives in order
to make the catalog as user friendly as possible. In short, the

knowledge engineer must build an=IUI for each domain-specific

library of reusable parts. His/her role is to serve as the intermediary

between the software development engineers and the application

developers.

Once an application developer has selected the most appropriate

domain-specific library of parts, he/she invokes the ESL editor. As

already explained, the ESL editor allows the application developer to

create, modify, store and retrieve graphs that represent applications.

The graphs show the structure of an application and what data
controls and constraints flow between the components (fig.l.l.2)The

components are depicted by boxes called nodes, and the data
controls, and constraints are shown as arrows linking the nodes.

Other structures, also called nodes, allow for merging and replicating

links and for including looping and branching logic. Each component

(box) is either a primitive or a subgraph, which makes possible

hierarchical decomposition. (fig.l.l.2)

With ESL editor, an application developer uses a mouse and pointer

to select menu and palette commands and to select nodes and links

on the screen. In this way, graphs are constructed, modified, and

stored for possible reuse.

8

Initialization

R

Comp _ Close Out]
I

Abort _ Stop
[terator F

" Fig.l.l.2 A typical ESL Graph

/1 I N

// I I I I \ x

Fig. 1.1.3 Hierarchical Decomposition of ESL graphs

Once the graphs representing an application are completed, the

application developer will invoke menu commands to validate the

graph system and to generate the required code in some high order

language, such as Ada. The generated code, in the form of a main

program and subprograms, will then be ready to be compiled and

linked with the object code of the primitives from the domain

specific library(ies). Alternatively, source code templates (such as

Ada generics or even main programs with certain parameters that

must be initialized before compilation) might be generated, if

required.

u

m

W

m

.m

it

L

==

W=

lib

m

m

m

U¢

9
W

rm_

L _

ESL graphs will be stored in a knowledge base, where they will be

represented, using a schema system, as objects with attributes. The

ability to store and retrieve ESL graphs implies a need for well-

organized, domain-specific libraries of graphs with good library

catalogs. Just as in the case of the libraries of primitives, a knowledge

engineer will need to create IUI s for the ESL graph libraries.

The internal representation and storage of graphs, the semantic

interpretation and validation of the graphs, and the generation of

code in high order language are done using knowledge-based

technology.

Graph Implementation and Execution

Fig 1.1.4 depicts a typical example graph created using the ESL editor

panel. Each box is an instance of an object. In other words each box is

merely a procedure call or a function call. The iterator node indicates

an iteration at that particular point until a certain condition is

satisfied. INNER_LOOP is a sub graph attached to the main graph. It is

a separately edited graph. The sub graph is shown in fig. 1.1.5.

Prior to executing a complete application, the graphs must be

translated to a high order language (HOL) representation and

subsequently compiled. A graph implementation is an HOL

representation of a hierarchical ESL data flow graph that can be

compiled by a standard HOL compiler for subsequent execution. The

translation process generates the graph implementation by mapping

the features found in the application's graph schemas to predefined

HOL constructs.

Li

r

10

r

7.

get exec Set pit co re Set Evc:

Get Exec . Get End Of Run

Compute Num of D] Get Exec

ITERATE

Set Num De INNER_LOOP

H
Get Inpul Get Exec

U

m

m
m

m

m

w

w

W

Fig. 1.1.4 An ESL graph example

m

!m
i

1

n

P
U

t Check Evn= t Get Exec 1

H
Get End Of Phase

ITERAT}

L
3et Environment Model One Step

H
Check Evnts 2 Get Exce 2

H
Get End of Phase

Fig. 1.1.5 ESL sub graph for INNER_LOOP

I

J

m
m

I

ll

m

i

w

v

Y

i

=3===

w

.m

W

L

Generated Code

-Ada code for graph six_dof_driver

. =

with ASDS_Exec_Record_Manager;

with six_dof driver_inner;

wth Environment_model;

with Six Dof_lnstantiations;

With state_types;

procedure six_dof_driver is

TEST18 • Boolean := TRUE;

Exec15 : ASDS_Exec_Record_Pointer_type;

Exec20 : ASDS_Exec Record Pointer_type;

Num_Diff_Eq16 : Positive;
Exec 17 : ASDS_Exec_Record_Pointer_Type;

Exec 19 : ASDS_Exec_Record_Pointer_Type;

begin

-- Code for node Get Exec 1

Exec15 := Six_DOF_lnstantiations.Get_Exec;

-- Code for node Set ptr to rec

ASDS_Exec_Record_Manager.set_pointer_to_ASDS_EXEC_record(Execl 5);

-- Code for node Set Evts
Six_DOF_lnstantiations.Sst_Discrete_Events;

-- Code for node Get Input 1

Six_DOF_lnstantiations.Six_DOF_lN PUT.Get_Input;

-- Code for node Get Exec 2

Exec19 := Six_DOF_lnstantiations.Get_Exec;

-- Code for node Get End of Run 1

Test18 := Six_DOF_lnstantiations.Get_End_Of_Run(Exec19);

- Code for ITERATE

while (TEST18) loop

- code for node Compute Num of DEs

Num_Diff_Eq16 := State Type.Compute_Num_Of_Diff_Ef;

- Code for node Get Exec 3

Exec17 := Six DOF_lnatantiations.Get_Exec;

- Code for node Set Num DEs

Six_DOF_lnstantiations.Set_Num_Diff_Eq(Exec17, Num_Dlff_Eq 16);

12

- Code for node inner loop
Six_dof_driver_in ner;

- Code for node Get Input

Six_DOF_lnstantiations.six_DOF_lnput.Get_lnput;

-- Code for node Get Exec

Exec20 := Six_DOF_lnstantiations.Get_Exec;

-- Code for node Get End of Run

TEST18 := Six_DOF_lnstantiations.Get_End_Of_Run(Exec20);
end loop;

end six dof_driver;

J

I

M

I

tll

m
p

l

1.2 Methods used to reengineer FM tool kit code to ESL Reusable
Method.

As described in section 1.1, we know that the code generated by a

designed graph in the ESL system, would be either a main program

or a sub program. Also we have mentioned , that a main program or

a sub program can be a single procedure or a function call or a set of

procedure or function calls or a set of procedure and function calls.

In addition, a main program or a sub program can have loop

structures and if-then-else structures. An important point is that,

ESL does not support nested loop structures. This is one of the

limitations provided in the ESL system. Hence, primarily, we need to

realize that, reengineering any application should be done within
this limited ESL framework.

Currently FM tool kit said to have eleven applications. These source

code have been developed in Ada. These applications look very

similar. For our "reengineering-for-ESL" purposes, four of these

applications namely INTRPLAN, IPCAPTUR, BEST1WAY and

POWRSWNG , have been randomly selected. A vital part of the

"reengineering-for-ESL" process is to develop a library of procedures

(or more generally, PRIMITIVES) containing the reusable software

13

am

W

11

W

I

i
m

Q

m

g

m
m

m

I

mr-

components , so that they can be put together to form a complete

application.

Analysis of FM-Tool kit applications

Initially, let us consider the two applications INTRPLAN & IPCAPTUR.

The code shown below (Fig. 1.2.1 & Fig. 1.2.2) depicts the main

programs of the above two applications.

F

m

with INTRPLEC ; use INTRPLEC ;

with INTRPLIO ; use INTRPLIO ;

procedure INTRPLAN is

begin

RETRIEVE_PREVIOUS_INPUTS_FROM_DISK

LET USER_EDIT_INPUT_DATA

SAVE_EDITED_INPUTS_ON_DISK

SET_UP_CONSTANTS_AND_PLANETARY_EPHEMERIDES

DISPLAY_DATA_SHELL (NOMINAL_DEPARTURE_DELTA_V

for J in 0..i0 loop

COMPUTE_POSITION_AND_VELOCITY_OF_TARGET_PLANET

for I in 0..16 loop

COMPUTE POSITION_AND_VELOCITY_OF_HOME_PLANET

COMPUTE_TRAJECTORY_DATA

DISPLAYVALUE (NOMINAL_DEPARTURE_DELTA_V

CHECK_FOR_INTERRUPT_FROM_KEYBOARD

end loop

end loop

DISPLAY_TRAJECTORY_DATA_OF_INTEREST_TO_USER

end

)

J)

I)

I, J)

, I, J)

Fig 1.2.1 - Main Program for INTRPLAN

W

m

z

with IPCAPTEC ; use IPCAPTEC ;

with IPCAPTIO ; use IPCAPTIO ;

procedure IPCAPTUR is

begin

RETRIEVE_PREVIOUS_INPUTS_FROM_DISK

LETUSER_EDIT_INPUT_DATA

SAVE_EDITED_INPUTS_ON_DISK

SET_UP_CONSTANTS_AND_PLANETARY_EPHEMERIDES

DISPLAY_DATA SHELL (NOMINAL_DEPARTURE_DELTA_V

for J in 0..i0 loop

COMPUTE_POSITION_AND_VELOCITY_OF_TARGET_PLANET (

for I in 0..16 loop

COMP,UTE_POSITION_AND_VELOCITY_OF_HOME_PLANET (I

14

)

J)

)

w

COMPUTE_TRAJECTORY_DATA ([, J)

DISPLAY_VALUE (NOMINAL_DEPARTURE_DELTA_V , I, J)

CHECK_FORINTERRUPTFROM_KEYBOARD

end loop

end loop

DiSPLAY TRAJECTORY_DATA_OF_INTEREST_TO_USER

end

Fig 1.2.2 - Main program for IPCAPTUR

Q

u

a

The two main programs look exactly the same, except for the

different dependent library units. (i.e intrplec & intrplio for

INTRPLAN and ipcaptec & ipcaptio for IPCAPTUR). In ESL terms

these two are non primitives , because they do not have any

computational instructions but a set of module calls. Therefore a

major modification is not required except for the elimination of the

FOR loops. (In ESL, nested looping structures are not allowed.).

A simple solution to this is to incorporate the inner FOR loop in a

separate module and isolate it. Then the two main program
structures will look as follows.

Ili

11,,

i
m

m

B

lw

S

with IPCAPTEC ; use IPCAPTEC ;

with IPCAPTIO ; use IPCAPTIO ;

procedure IPCAPTUR is

begin

RETRIEVE_PREVIOUS_INPUTS_FROM_DISK

LET_USER_EDIT_INPUT_DATA

SAVE_EDITED_INPUTS ON DISK

SET_UP_CONSTANTS_ANDPLANETARY_EPHEMERIDES

DISPLAY_DATA_SHELL (TOTAL_DELTAV

for J in 0..I0 loop

COMPUTE_POSITION_AND_VELOCITY_OF_TARGET_PLANET

INNER_LOOP;

end loop

DISPLAY_TRAJECTORY_DATA_OF_INTEREST_TO_USER

end

FIG. 1.2.3a

)

J)

_m

g

U

m

-iw

l

w

m

with INTRPLEC ; use INTRPLEC ;

with INTRPLIO ; use INTRPLIO ;

15

I

u_

- =

[]

z

m
I

i

mE
m

m

m

m

mm
m

m
m
w_

procedure INTRPLAN is

begin

RETRIEVE_PREVIOUS_INPUTS_FROM_DISK

LET_USER_EDIT_INPUT_DATA

SAVE_EDITED_INPUTS_ON_DISK

SET_UP_CONSTANTS_AND_PLANETARY_EPHEMERIDES

DISPLAY_DATA_SHELL (NOMINAL_DEPARTURE_DELTA_V

for J in 0..I0 loop

COMFUTE_POSITION_ANDVELOCITY OF TARGET_PLANET

iNNER_LOCP;

end loop

DISPLAY_TRAJECTORY_DATA_OF_INTERESTTO_USER

end

)

(J)

FIG. 1.2.3b

procedure INNER_LOOP is

begin

end INNER_LOOP;

for I in 0..16 loop

COMPUTE POSITION AND_VELOCITY OF HOME_PLANET (I)

COMPUTE_TRAJECTORY_DATA (I, J)

DISPLAY_VALUE (TOTAL DELTA_V , I, J)

CHECK_FOR_INTERRUPT_FROM_KEYBOARD

end loop

FIG. 1.2.3c

The module INNER_LOOP is the newly created module in order to

incorporate the inner FOR loop in the original main program of both

INTRPLAN and IPCAPTUR. As a matter of fact , this new procedure

automatically have become a reusable component. Further, the new

main program is just a set of module calls with one single loop

structure. But the FOR loop must be changed to a WHILE loop as to

fulfil ESL requirements. We have discussed this later in this section.

The above modification is inadequate. Of interest to us is whether,

the modified main programs INTRPLAN and IPCAPTUR can be

represented in an ESL graph. A straight answer is NO. Still we need

to change the outer FOR loop structure. We can think of replacing the

outer FOR loop structure with a WHILE loop structure as ESL

supp6rts WHILE loops. In order tO do this, the value of J must be

incremented inside the WHILE loop. This can be implemented with a

simple computational statement like J := J + 1;

with IPCAPTEC ; use IPCAPTEC ;

with IPCAPTIO ; use IPCAPTIO ;

procedure IPCAPTUR is

16

LOOP_END : boolean := FALSE;

J : .integer := I;

begin

RETRIEVEPREVIOUSINPUTS_FROM_DISK

LET_USERED!T_!NPUT_DATA

SAVE_EDITED_INPUTS_ON_DISK

SET_UP_C©NSTAb'TSAND_PLANETARY_EPHEMERIDES

DISPLAY_DATA_SHELL { TOTAL_DELTA_V

while LOCP END = FALSE loop

COMPUTEPOSITION_AND_VELOCITY OF TARGETPLANET

INTNER_LOOP;

J := J ÷ I;

if J > i0 then

LOOP_END := TRUE;

end if;

end loop

DISPLAY TRAJECTORY_DATA_OF_INTEREST_TO_USER

end

FIG. 1.2.4

)

{ J)

The above is the modified main program code for IPCAPTUR.

(Considering the main program of IPCAPTUR is good enough for the

time being). Changing the inner FOR loop into a WHILE loop caused

us to incorporate few other additional statements (FIG. 1.2.5) within

the WHILE loop.

J := J ÷ I;

if J > i0 then

LOOP_END := TRUE;

end if;

FIG. 1.2.5

Added Computational Statements inside the WHILE loop

The question is whether the modified main program shown in figure

1.2.4 is good enough to construct an ESL graph. Again, a straight

answer is NO. The simple reason is that, there cannot be any

computational statements within a piece 0f-c0de except for a set of

module calls , to construct the corresponding ESL representation.

Hence a solution is to further decompose the main-program (of

INTRPLAN & IPCAPTUR); meaning, removing the outer FOR loop and

incorporate it in a separate module, and call that module from the

main program. The figure 1.2.6 shows the final picture of the main

program for INTRPLAN and IPCAPTUR.

with IPCAPTEC ; use IPCAPTEC ;

with IPCAPTIO ; use IPCAPTIO ;

17

I

Im

m

ml

!
g

m

m

J

m
m

mm

J

m

g

U

i

I

lid

U

m

R

W

m

imv

m

i

=

procedure IPCAPTUR is

begin

RETRIEVE_PREVIOUS_INPUTS_FROM_DISK

LET_USER_EDIT_INPUT_DATA

SAVE_EDITED_INPUTS_ON_DISK

SET_UP_CONSTANTS_AND_PLANETARY_EPHEMERIDES

DISPLAY_DATA_SHELL (TOTAL DELTA_V

MAIN_LOOP;

DISPLAY_TRAJECTORY_DATA_OF_INTEREST TO USER

end

FIG. 1.2.6a

with INTRPLEC ; use INTRPLEC ;

with INTRPLIO ; use INTRPLIO ;

procedure INTRPLAN is

begin

RETRIEVE_PREVIOUS_INPUTS_FROM_DISK

LET_USER_EDIT_INPUT_DATA

SAVE_EDITED_INPUTS ON DISK

SET_UP_CONSTANTS_AND_PLANETARY_EPHEMERIDES

DISPLAY_DATA_SHELL (NOMINAL_DEPARTURE_DELTA_V

MAIN_LOOP;

DISPLAY_TRAJECTORY_DATAOFINTEREST_TO_USER

end

- "FIG.- _1.2.6b
where MAIN_LOOP is the newly created procedure to incorporate the

outer loop in the main program(s) (FIG 1.2.7).

procedure MAIN_LOOP is

begin

for J in i..i0 loop

COMPUTE_POSITION_AND_VELOCITY. OF TARGET_PLANET (

INNER_LOOP;

end loop;

end MAIN_LOOP;

J)

FIG. 1.2.7

The final main program(s) is purely a set of module calls and within
ESL requirements. The ESL graphical representation to create the

main program structure is shown in FIG. 1.2.8.

18

FIG. 1.2.8

ESL Graphical Representation of The Main Program for INTRPLAN
or IPCAPTUR

£s,la uP
Setu Cons _Ephemerides

evious_input_from disk

The decomposition of the main program(s) caused create two new

procedures INNER_LOOP and MAIN_LOOP. Obviously, these two

procedures have the format of a ESL sub program where, only
module calls are allowed. But first we need to modify the module

MAIN_LOOP. Introduction of a WHILE loop and to have a separate

procedure for the portion shown in fig.l.2.5 would be the main
modifications. Fig. 1.2.9 illustrates the MAIN_LOOP after the
modifications.

procedure MAIN_LOOP is

LOOP_END : boolean := false;

CONST : integer CONSTANT :ffii0

begin

while LOOP_END = false loop

COMPUTE_POSITiON_AND_VELOCITY_OF_TARGET_PLANET (

INNER_LOOP;

SET_CONTROL(J, LOOP_END, CONST);

end loop;

end MAINLOOP;

J)

FIG. 1.2.9

I

u

|

m

m

u

711

qw

_I

lID

I

= =

g

m

m

m

W

19
g

L

where SET_CONTROL is another new procedure, created to

incorporate the small portion of code shown in fig. 1.2.5. This is
shown in FIG. 1.2.10

B

m

W

!

!

m

I
z

U
V

procedure SET_CONTROL(J_IN : integer; DONE : boolean; CONST : integer) is

begin

J_IN :: J_IN + i;

if J_IN > CONST then

DONE := TRUE;

end if;

end SET_CONTROL;

FIG. 1.2.10

The benefit of making this modifications is that the software

component SET_CONTROL is now converted to a reusable module.
Hence this same module can be called by the procedure INNER_LOOP,

by making similar modifications as done for the module MAIN_LOOP.

Fig. 1.2.11 shows the modified procedure INNER_LOOP.

procedure INNER_LOOP is

LOOP_END : boolean := FALSE;

CONST : integer CONSTANT := 16;

begin

while LOOP_END = FALSE loop

COMPUTE_POSITION_AND_VELOCITY_OF_HOME_PLANET (I)

COMPUTE_TRAJECTORY_DATA (I, J)

DISPLAY_VALUE (TOTAL_DELTA_V , I, J)

CHECK_FOR_INTERRUPT_FROM_KEYBOARD

SET_CONTROL(J, LOOP_END, CONST);

end loop;

end INNER_LOOP;

FIG 1.2.11

It is now very clear that the two procedures INNER_LOOP and the

MAIN_LOOP are converted into ESL subprograms. Figures 1.2.12 and

1.2.13 illustrate the ESL graphical representation of the two

subprograms.

m

m
m
m
R

20

FIG. 1.2.12

The ESL object graph for subprogram MA!N LOOP

m

p

comput e__pos it ion_and_re loci ty_o f_t arget_pl anet
loop

F_
m

l

=

u

,j

g

i
m

FIG. 1.2.13

The ESL object graph for subprogram INNER_LOOP

m

n@p--

U

t loop

cosp' _jute tr_a ec_Pl_alue__yl _

compute l_osition and_velocity of_home ;planet

The same ESL object graph could be used for BESTlWAY It is

important to make sure that the user set proper constant values

when modules being called for indiviclual applications. _For example,

the constant value passed into the reusable module SET_CONTROL,

must be properly set inside procedures MAIN_LOOP and

INNER_LOOP. i.e values 10 and 16 respectively for INTRPLAN and

IPCAPTUR. Similarly, for BESTIWAY.

21

I

U

II

m

il

w_

m

I

Q

11

m

J

= =

u

[]

!
i

i
m
i

i

I

m

i
W

m

i
Rm
I

Comparatively, main program for POWERSWNG looks slightly

different to the main programs of the other three applications. But of

course, many of the modules already modified for reusable purposes

can be used in designing ESL object graph for POWERSWNG. For

POWRSWNG, the following procedure calls, must be added.

COMPUTE_POS ITION_AND_VELOCITY_OF_SWINGBY_PLANET

COMPUTE_TRAJECTORY_FOR_FIRST_HELIOCENTRIC_LEG

D IS PLAY_VALUE 1

DISPLAY_VALUE2

COMPUTE_TRAJECrORY_FOR_SECOND_HELIOCENTRIC_LEG

The following is the ESL graphical representation for POWRSWNG.

FIG. 1.2.14

ESL Object graph for main program of POWRSWNG

!
1
l

m_

i

m

22

FIG. 1.2.15

The ESL object graph for subprogram MAIN LOOP

il
nl

p]m

ul

tl

"\ _r_ a
(i _ Compute_t ra ject ory_for_fi rst_hel iocent ri c_leg

"- compute_position_and_velocity of swingby_planet

loop

D

Q

u

I

m

m

W

im

W

mJ

l_

FIG. 1.2.16

The ESL object graph for subprogram INNER_LOOP of POWRSWNG

1

n

P

u

t

m

loop

| _ _ Check for i__tSeETr--CONTRO_L

 is la value2Pt r°i;keYb°ard
_ _compute_trajectory_data_for_secorld_heliocentric_ g

compute_position_and_velocity_of_target_planet

_m

U

w

m

m

m

J

m,m

23

i

W

L

z

E,

m

tz_

r

m

1.2.2 Modifications and Decomposition of Primitives.

In ESL terms, Primitives are the modules that cannot be further

decomposed or modules that are not worth decomposing. For

example the module RETRIVE_PREVIOUS INPUTS_FROM_DISK is a

repeated module in all four applications in question. Though the
module in POWRSWNG is slightly different to the module in other

three applications, all four modules serve the same purpose. Further

decomposition is out of question. Hence, best option is to have a

single module that serves all four applications, making that a

reusable component. Of course, to build a common reusable module,

modifications are need to be carried out.

Let us look into the modifications that have been done in order to

make this module a reusable component. Originally, not a single

parameter was passed into the procedure. As a major modification,

two new parameters have been introduced namely FILE_NAME of

type string and NAME_IN of type APPLICATION_TYPE.

APPLICATION_TYPE is a user defined type and initially has the

enumerated type values INTRPLAN, IPCAPTURE, BESTlWAY, and

POWRSWNG. NAME_IN passes in the appropriate value based on the

application. FILE_NAME is the data_file name relevant to each

application. In other words the corresponding data_file name for

INTRPLAN is intrplan.get. Similarly others. Inside the module, CASE

and IF_THEN_ELSE structures have been introduced to serve

different application types.

Modifications have been made to the following procedures in a

similar manner.

LET_US ER_EDIT_INPUT_DATA

SAVE_EDITED_INPUT_ON_DISK

KILL_OUTDATED_INPUT_FILE

DISPLAY_LINE_LEADERS

DISPLAY_FOOTER_LINES

In each one of the above modules, a new input parameter of

APPLICATION_TYPE is introduced. This parameter passes the name

of the application that uses this module into the module. This helps

to serve the needs of each application program. For instance,

POWRSWNG performs a slightly different task in many of the above

modules. Passing in the name of the application helps direct the

24

execution to the specific area within the module where those
different tasks are carried out.

I

L_

in

1.2.3. Packages COMMON_MODULES, DATA_TYPES, DATA_TYPES_SPEC

The packages CO_ON_M_ULES_ DATA_T_ES, DATA_TYPES_SPEC

COMMON_MODULES are the three new packages introduced into the

system. The services provided by these packages are described
below.

Package COMMON_MODULES,

This is a newly created package build to include all the common

reusable procedures and functions. Also this package includes newly

created reusable modules as a result of decomposition. For instance,

the modules described in section 1.2.1 namely MAIN_LOOP,

INNER_LOOP and SET_CONTROL, are residing in package

COMMON_MODULES. Of course there are many more modules residing

in this package, which we will be discussing later in this report.

Package DATA_TYPES.

This is also a newly created package to include all the type

declarations and variable declarations, which are also repeated in all

four applications. However this package includes only the data types

and type declarations that are found in package bodies of all four

application programs.

m

iI

m

m

U

m

J

talc

lip

D

I

m

q_

Package DATA_TYPES_SPEC.

This package is similar to the package DATA_TYPES. This package is

created to include all the data types defined in the specifications of

application programs.

i

w

25

W

J

L--

L__

n

m

: z

=

F

It is important to make a note that packages DATA_TYPES and

DATA_TYPES_SPEC are now directly reusable as all the application

programs use these packages.

1.2.4 Further Modifications.

After a thorough analysis of the modules

1. COMPUTE_POS ITION_AND_VELOCITY_OF_HOME_PLANET,

2. COMPUTE_POS ITION AND_VELOCITY_OF_TARGET_PLANET,

3. COMPUTE_POSITION_AND_VELOC1TY_OF_SWINGBY_PLANET,

it was found that these modules are very similar and perform the

same task. Therefore, it is obvious that, from these three modules a

single reusable module can be built.

procedure COMPUTE_POSITION AND VELOCITY_OF_HOME_PLANET (I : integer) is

DT_SECS : FLOTE ;

begin
JDATE(HOME) := NOM__JDATE(HOME) + LONG_FLOTE(I-8) * INTERVAL(HOME)

DT_SECS := 86400.0 * FLOTE(JDATE(HOME) - PER_JDATE(HOME)) ;

PROPAGATE_POS ITION_AND_VELOCITY_THRU_TIME (

PER_HELIPOS(HOME), PER_HELIVEL(HOME), DT_SECS, GM_SUNp(HOME),

HELIPOS(HOME) , HELIVEL(HOME)) ;

end
FIG. 1.2.17

procedure COMPUTE_POSITION_AND_VELOCITY_OF_TARGET_PLANET (J : integer) is

DT_SECS : FLOTE ;

begin
JDATE(TARG) := NOM_IDATE(TARG) + LONG_FLOTE(J-5) * INTERVAL(TARG)

DT_SECS := 86400.0 * FLOTE(IDATE(TARG) - PER_.JDATE(TARG)) ;
PROPAG ATE_POS ITION_AND_VELOCITY_THRU_TIME (

PER_HELIPOS(TARG) , PER_HELIVEL(TARG) , DT_SECS , GM_SUNp(TARG) ,

HELIPOS(TARG) , HELIVEL(TARG)) ;

end
FIG. 1.2.18

26

l

procedure COMPUTE_POSITION_AND_VELOCITY OF SWlNGBY_PLANET (j integer) is

DT_SECS FLOTE ;

begin

JDATE(SWBY) := NOM_JDATE(SWBY) + LONG_FLOTE(3-5) */NTERVAL(SWBY)

DT_SECS := 86400.0 * FLOTE(JDATE(SWBY) - PER_JDATE(SWBY)) ;

PFIOPAGATE_POSITION_AN D_VELOCITY_TH RU_TIM E (

PER_HELIPOS(SWBY), PER_HELIVEL(SWBY), DT_SECS, GM_SUNp(SWBY),

HELIPOS(SWBY) , HELIVEL(SWBY)) ;

end

FIG. 1.2.i9

B

W

m
J

Shown above are the three procedures found in all four applications.

As we have said earlier, simply these modules do the same task

except for a few minor differences. The module shown below is a

procedure built in order to perform all three tasks, and is reusable.

procedure COMPr/TE_POSITION_AND_VELOCITY_OF_PLANET (I : integer;

PLANET : PLANET_TYPE;

NAME : APPLICATION_TYPE) is

DT_SECS : FLOTE ;

TEMP : TRAG_NODE

COUNTER : integer;

begin

case PLANET zs

when TARGET I target => TEMP := TRAG;

if NAME = POWRSWNG then

COUNTER := I - 6;

else

COUNTER := I - 5;

end if;

when HOME] home => TEMP := HOME;

COUNTER := I - B;

when SWNGBY] swngby => TEMP := SWBY;

COUNTER := I - 5;

when others => null;

end case;

if NAME = POWR_WNG AND DESTINATION= _WNGBY then

JDATE(TEMP) := NOM_JDATE(TEMP);

else

JDATE(TEMP) := NOM_JDATE(TEMP) + LONG_FLOTE(COUNTER) * INTERVAL(TEMP)

end if;

DT SECS := 86400.0 * FLOTE(JDATE(TEMP) - PER_JDATE(TEMP))

PROPAGATE_POSITION_AND_VELOCITY_THRU_TIME (

PER_HELIPOS(TEMP) , PER_HELIVEL(TEMP) , DT_SECS , GM_SUNp(TEMP) ,

i.

m

m

*ram

27
mm

v

HELIPOS(TEMP) , HELIVEL(TEMP)

end COMPUTE_POSITIONAND_VELOCITY_OF_PLANET;

FIG. 1.2.20

) ;

__=

E

L

_J

--=_

_J
J

This new procedure is named COMPUTE_POSITION_AND_VELOCITY

_OF_PLANET, and have three new parameters namely I of type

integer, DESTINATION of type DESTINATIONTYPE and NAME_IN of

type APPLIATION_TYPE. DESTINATION_TYPE is also a user defined

type and it defines the destination (HOME, TARGET or SWINGBY).

APPLICATION_TYPE is the same type described earlier.

At this point, it is important to make a note that, creating a new

module by the name COMPUTE_POSITION_AND_VELOCITY

OF_PLANET will change the corresponding object name in ESL object

graph shown in section 1.2.2

FIG. 1.2.21

The ESL objecl graph for subprogram MAIN_LOOP

m

1

n

p

U

t loop
compute_position_and_velocity_of__planet

D

E

T 28

FIG. 1.2.22

The ESL object graph for subprogram INNER_LOOP

L

P

t loop

_check_for_interrupt_from_keyboard

_comput e_t raj ectory_data

compute_position and_velocity_of_planet

m

i

I

I

I

B
I

g

Similarly the object names

compute_position_and_velocity_of_home_planet

compute_position_and_velocity_of_target_planet

compute_position_and_velocity_of_swingby_planet

in figures 1.2.15, 1.2.16 and 1.2.18 for POWRSWNG will change

accordingly.

1.2.5 Modification of procedure COMPUTE_TRAJECTORY_DATA

Compute_trajectory_data is a another procedure available in all four

applications. A thorough analysis revealed that this procedure i s an

ideal module to decompose and convert into a ESL sub program.

Decomposition had to be done so that the grains (decomposed

components) could be reused in other simi-lar_ modtii-es throughout

the applications. One major change made in reengineering this

module is to eliminate exception handlers. May be this looks very

inappropriate, but elimination of exception handlers was necessary

to convert this module into a ESL sub program. We know that in ESL

a sub progr_aliows only a set of procedure or function calls Also
we need to realize that all _-ese changes must be done having ESL in

mind. At this point we need to th{nk of how to tackle the granularity

problem, i.e how big a grain is ?. The reason is that, when

29

I

g

m

z
iI

I J
ll i

m
W

I

c z

U

m

M

m
m
l
w

lem

U

decomposing the module, very small grains of size one, two or three

lines remains within the module. In ESL terms, we cannot leave them

within a module. We are forced to eliminate them and reside them in

separate modules.

Let us take a look at how decomposition was done. FIG. 1.2.23

shows decomposed grains by drawing lines in between. Each grain is

residing in a procedure with a appropriate procedure name.

procedure COMPUTE_TRAJECTORY_DATA (I, J : integer) is

TO0 FAST : exception ;

TOO_HOT : exception ;

SINFAC : FLOTE ;

TEST VEC : VECTOR ;

TF_DAYS : FLOTE ;

l

[]
I

Im

E

Im

B

m

m

_H

U
E

B

mm
I

im

N

U

I

m

m
I

begin
.. EXCEPTION HANDLER_f0001

TF_DAYS := FLOTE(JDATE(TARG) JDATE(HOME))

if abs(TF_DAYS) <= 20.0 then

raise TOOFAST

end if

.. CALCULATIONS

if TF_DAYS > 0.0

then DEP :_ HOME

else PEP := TARG

end if

if DEP= HOME

then ARR := TARG

else ARR := HOME

end if

TF_SECS := 86400.0 * abs(TF_DAYS)

ANGMO_PREF := HELIPOS(DEP) * HELIVEL(DEP)

TEST_VEC := HELIPOS(DBP) * HELIPOS{ARR) - -- * gives cross product

if TEST_VEC & ANGMO_PREF < 0.0 -- & gives dot product

then SINFAC := -ABS(TEST_VEC)

else SINFAC := +ABS(TEST_VEC)

end if

XFR_ANG := FULL_REVS*_4OPI + ATANI(SINFAC, HELIPOS(DEP)&HELIPOS(ARR)) ;

DVALUE(HELIOCENTRIC_TRANSFER_ANGLE)(I,J) := DATA_MATRIX_INTEGER(
DEGPERRAD * XFR_ANG) ;

DVALUE(' FLIGHT_TIME)(I,J) := DATA_MATRIX_INTEGER(TF_DAYS)

...

FIND_BEST_TRANSFER_TRAJECTORY
.. CALL_FOR EXCEPTION_HANDLER_f0003_10004

if (FULL_REVS > 0) and (SMA_SIZE /= BEST_SIZE) then

SOLVE_LAMBERT_PROBLEM { HELIPOS(DRP), TF_SECS, HELIPOS(ARR),

ANGMO_PREF, XFR_HELIVEL(DEP), XFR_HELIVEL(ARR),

GM_SUN , FULL_REVS, BEST SIZE) ;

end if

.. EXCEPTION HANDLER_I0002

if ARRIVaL_SPEED_PENALTY > 0.0 then

raise TOO_HOT

end if

.. _

30

COMPUTE_HELIOCENTRIC_T_JECTORYDATA (I J)

COMPUTE_PLANETOCENTRIC_DEPARTURE_DATA (I J }

COMPUTE_PLANETOCENTRICARRIVAL_DATA (I J)

pragma page ;

exception

when TOO_FAST :>

for KIND in DATA_KIND loop

DVALUE(KIND](I,J) := 10001

end loop

when TOO HOT =>

for KIND in MULTIREV_SEMIMAJOR_AXIS. APHELION_DISTANCE loop

DVALUE(KIND) (I,J) := 10002

end loop

when LAMBERT Z_ITERATIONFAILED_TO_CONVERGE =>

for KIND in MULTIREV__EMIMAJOR_AXIS..APHELION_DISTANCE loop

DVALUE(KIND)(I,J) := 10003

end loop

when LAMBERT_CANNOT_ATTAIN_SPECIFIED_NUMBER OF REVS =>

for KIND in MULTIREV_SEMINAJOR_AXIS..APHELION_DISTANCE loop

DVALUE(KIND){I,J) := 10004

end loop

end

FIG. 1.2.23

All exceptions are handled within the same module where the

exception is raised. For example , consider the newly created

procedure EXCEPTION_HANDLER_10001. The exception is raised if
the absolute value of TF_DAYS is less than _r equal to 20.0. The

module is reengineered in such a way that the sequence of
instructions that are to be executed the moment this exception is

raised are within the same procedure itself. This is illustrated in FIG.

1.2.24.

g

m

I

I

ii

J

U

l

m

Procedure EXCEPTION HANDLER_I0001(TF_DAYS : flote; DONE : boolean; NAME : in

APPLICATION_TYPE; CATEGORY : CATEGORY_TYPE] IS

Begin

if NAME = POWRSWNG then

if CATEGORY = LEG1 then

TF_days := flote(Jdate(SWBY) - JDATE(HOME));

if abs(TF DAYS) <= 20.0 then

for kindl in LEGI_HELIOCENTRIC_TRANSFER_ANGLE..LEGI_FLIGHT_TIME loop

VALUEI(KINDI) (J) := i0001;

end loop;

end if;

DONE i= true; _:

elsif CATEGORY = LEG2 then

TF_days := flote(Jdate(TRAJ) JDATE(SWBY));

if abs(TF DAYS) <= 20.0 then

31

u

w

w

m

w

w

E

E

for kindl in LEG2_HELIOCENTRIC_TRANSFER_ANGLE.. LEG2_FLIGHT_TIME loop

'VALUE2(KIND2) (I,J) := i0001;

end loop;

end if;

DONE := true;

end if;

else

TF_days := flote(Jdate(TRAG)

if abs_TF_DAY$1 <= 20.0 then

for kind in DATA_KIND loop

DVALUE(KIND)(I,J) := I0001;

end loop;

DONE := true;

end if;

end if;

end EXCEPTION_HANDLER_f0001;

JDATE{HOME]];

FIG. 1.2.24

The variable TF_DAYS should be passed-in from the module

COMPUTE_TRAJECTORY_DATA because it is declared inside that

module. Moreover, three new parameters NAME_IN, CATEGORY and a

boolean variable DONE are passed into the module. CATEGORY is of

user defined type CATEGORY_TYPE and have elements (LEG1 and

LEG2).

In the original code of this module, once the exception is raised, the

execution is passed to the area where the exception is defined. Once

that area is executed, the control will transferred to the end of the

module. In the reengineered module, this is handled by a if-then-
else structure. We have selected to introduce an if-then-else

structure because ESL supports such structures. Hence the

reengineered procedure COMPUTE_TAJECTORY_DATA will have the

following format and is a sub program within ESL requirements.

procedure COMPUTE_TRAJECTORY_DATA (I, J : integer) is

SINFAC : FLOTE ;

TEST_VEC : VECTOR ;

TF_DAYS : FLOTE ;

DONE_I, DONE_2, DONE_3 : boolean := false;

DESTINATION_D : DESTINATION_TYPE := DEPARTURE;

DESTINATION_A : DESTINATION_TYPE:= ARRIVAL;

NAME : APPLICATION_TYPE:= INTRPLEC;

CATEGORY := DUMMY;

begin

EXCEPTION_HANDLER_I0001{TF_DAYS,DONE_I, NAME , CATEGORY);

if DONE_I = false then

CALCULATIONS(TF_DAYS, SINFAC, TEST_VEC);

FINDBEST_TRANSFER_TRAJECTORY;

CALL_FOR_EXCEPTION_HANDLER_I0003_I0004(DONE_2,CATEGORY,NAME);

32

if DONE_2 = false then

EXCEPTION_HANDER_I0002 {DONE_3, NAME) ;

if DONE 3 = true then

COMPUTE_HEL!OCENTRIC_TRAJECTO_Y_DATAf [, J, NAME]_;

COMPUTE_PLANETOCENTRIC_ARRIVAL DR DEPARTURE_DATA,_I, J, DESTINATION D, NAME] ;

COMPUTE PLANETOCENTRIC_ARRIVAL OR DEPARTURE DATA(I, J, DESTiNATION A, NAME

end if;

end if;

end if;

end COMPUTE TP_%JECTORY DATA;

FIG. 1.2.25

ill

lid

I

The corresponding ESL object graph diagram for the above sub

program is shown in fig. 1.2.26.
Ill

U

FIG. 1.2.26

ESL OBJECT DIAGRAM FOR THE SUB PROGRAM CO_IPUTE_TRAJECTORY_DATA

m

J

J

J

The ESL Object graphs of the same sub program in BEST1WAY and

POWRSWNG are slightly different to the above. The graph shown

above is the ESL object graph for INTRPLAN. The ESL object graph

for IPCAPTUR is almost the same except for less one procedure call(

i.e exception_handler 10002).

I

J

g

_I

I

33

J

m

m_

mL

L--

E

In the original program code for the procedure

COMPUTE_TRAJECTORY_DATA, we see two procedure calls by the

names COMPUTE_PLANETOCENTRIC_DEPARTURE_DATA and

COMPUTE_PLANETOCENTRIC_ARRIVAL_DATA. Since the two

procedures do the same task, we could have one procedure to handle
both situations and building another reusable module.

procedure COMPUTE_PLANETOCENTRIC_DEPARTURE_DATA (I,J : integer } is

DECL : integer

DELV : FLOTE

DV : integer

RASC : integer

VIN-HAT : VECTOR

VINMAG : FLOTE

VINVEC : VECTOR

VINF : integer

begin

VINVEC := (XFR_HELIVEL DEP)-HELIVEL(DEP))*VBASE_M50_E(DEP)

VINMAG := ABS(VINVEC)

VINHAT := VINVEC / VINMAG

DELV := DEPARTURE_VELOCITY_INCREMENT

DV := DATA_MATRIX_INTEGER(DELV * i00

VINF := DATA_MATRIX_INTEGER(VINMAG * 100

DECL := ROUND(ASIN (VINHAT(3)) * 1800 / PI

RASC := ROUND(ATANI(VINHAT(2) , VINHAT(1)) * 1800 / PI

DVALUE(NOMINAL_DEPARTURE_DELTA_V){I,J) := DV

DVALUE(DEPARTURE V_INFINITY_MAGNITUDE)(I,J) := VINF

DVALUE(DEPARTURE V_INFINITY_DECLINATION)(I,J) := DECL

DVALUE(DEPARTURE_V_INFINITY_RTASCENSION)(I,J) := RASC

end ;

-- dkm/sec

-- dkm/sec

-- 0.I deg

-- 0.1 deg

FIG. 1.2.27

=_..

s

procedure COMPUTE_PLANETOCENTRIC_ARRIVAL_DATA (I,J : integer) is

DECL : integer ;

RASC : integer ;

VINHAT : VECTOR ;

VINMAG : FLOTE ;

VINVEC : VECTOR ;

VINF : integer ;

SPEED : FLOTE ;

SPD : integer ;

begin

VINVEC := (XFR_HELIVEL(ARR)-HELIVEL(ARR))*VBASE_M50_E(ARR)

VINMAG := ABS(VINVEC)

VINHAT := VINVEC / VINMAG

34

SPEED := SQRT{ VESQ{ARR) + VIN_m_AG*VI_%G }

SPD :_ DATA MATRIX_INTEGER(SPEED * i00

V!NF :-- DATAj_-ATRI X INTEGER (Vi _-_.G " i00

DECL := ROUND(ASIN [VIN]_AT_3)) * 1300

RASC := ROUND(AT._I(VI_HAT(2) , VINYL%T(1)) " 180C

DVALUE(ARRiVAL_SPEED) (i,$) := SPD

DVALUE { ARRIVAL V L_FINITY_MAGMIT_:DE) (7, J_, := VI_F

DVALUE{ ARRIVAL V INFINITY_DECLINATION)(I,J) := DECL

DVALUE(ARRIVAL V iNFINITY RTASCENSION) (I,J) := ?_%SC

end

Pi

PI

-- dkm;sec

--dkm:sec

-- 0.l des

-- 0.l deg

FIG. 1.2.28
procedure COMPUTE_PLANETOCENTRIC_RRIVAL OR DETARTURE_DATA (I,J: integer;

DESTINATION : DESTINATION TYPE;

N_ME: APPLICATION_TYPE] is

DECL : integer;

RASC : integer;

VINHAT: VECTOR;

VI_M_%G: FLOTE;

VINVEC: VECTOR;

Vi._/F : integer;

DV OR SPD : integer;

TEMP: TRAJ_NODE;

NDDV OR_AS: ;

DVIM_OR_AVIM: ;

DVID_OR_AVID: ;

DVIR OR_AVIR;

TOT_DELV: flote;

TOT DV : integer;

begin

case DESTINATION is

when DEPARTL_E i departure => TEMP := DEP;

when ARRIVAL T arrival => TEMP := ARR;

end case;

VINVEC := (XFR HELIVEL(TEMP)- HELIVEL(TEMP))*VBASE M50 E(TEMP);

VIN%4AG := ABS(VINVEC) ;

VI_HAT := VINVEC / VINMAG;

if DESTINATION = DEPARTURE then

DELV OR SPEED := DEPARTURE VELOCITY INCREMENT;

if NAME = IPCAPTURE then

TOT_DELV := ARRIVAL_VELOCITY_INCREMENT + DELV_OR_SPEED;

TOT_DV := DATA_MATRIX_INTEGER(TOT_DEV * I00);

end if;

NDDV_OR_AS := NOMINAL_DEPARTURE DELTA_V;

DVIM_OR_AVIM := DEPARTURE_V_INFINITY_MAGNITUDE;

DVID_ORAVID := DEPARTURE_V_INFINITY_DECLINATION;

DVIR_ORAVIR := DEPARTURE_V_INFINITY_RTASCENSION;

elsif DESTINATION = ARRIVAL then

DELV OR SPEED := SQRT(V_SQ(TEMP] + VINMEG*V~MEG);

DELV OR_SPEED := MIN (DELV_OR_SPEED , MAXAVELMAG(TEMP);

NDDV OR AS := ARRIVAL_SPEED;

DVIM_OR_AVIM := ARRIVAL_V_INFINITY_MAGNI_/DE;

DVID OR AVID := ARRIVAL_V_INFINITY_DECLINATION;

DVIR OR AVIR := ARRIVAL_V_INFINITY_RTASCENSION;

end if;

DV OR SPD := DATA_MATRIX_INTEGER(DELV_OR SPEED * I00);

VINF := DATA_MATRIX_INTEGER(VINMAG * I00);

DECL := ROUND(ASIN { VINKAT(3)) * 1800/ PI) ;

35

J

i

J

D

w

J,

m
w

U

=

m

_s

J

=__

I

w

l
j=

It.am

!

u

mB

m

i

m
J

w

m

_m

J

m

RASC := ROUND(ATANI(VINHAT(2], VIb._AT

if NAME : IPCAP_/RE then

DVALUE

DVALUE

DVALUE

DVALUE

DVALUE

end if

end;

NDDV_OR_AS)([,J) := DV OR SPD -- dkrn/sec

NDDV_OR AS)(I,J) := DV OR_SPD --dkrn/sec

DVIM OR AVIM] (I,J) := VINF ; -- dkrn/sec

DVID OR AVID) (I,J) := DECL ; -- 0.! deg

DVIR OR AVIR)(I,J! := .RAEC ; -- 0.[deg

FIG. 1.2.29

The figures 1.2.27 and 1.2.28 show the two procedures in question.

Fig. 1.2.29 is the modified procedure built to represent both the

procedures shown in figures 1.2.27 and 1.2.28. This procedure

replaces 8 modules in all four applications. And hence, it is reusable.
In order to make this a reusable module, new variables have been

introduced along with the necessary modifications. This procedure

also resides in the package Common_modules which is designed to

reside all the newly created, and modified modules.

Procedure COMPUTE_TRAJECTORY_FOR_FIRST_HELIOCENTRIC_LEG,

and COMPUTE_TRAJECTORY_FOR_SECOND_HELIOCENTRIC_LEG are

available only in applications BESTlWAY and POWRSWNG. However

the procedure in POWRSWNG is very similar to the procedure

COMPUTE_TRAJECTORY_DATA in INTRPLAN & IPCAPTURE. Hence this

procedure in POWRSWNG can be replaced by already designed

reusable components and made a separate ESL object graph. But as

we have done in earlier cases, these two procedures in BESTIWAY

have been modified and built one single reusable procedure named

COMPISI'E_TRAJECTORY_FOR_HRST_AND_SECOND_

HELIOCENTRIC_LEG. The following figures show the modifications.

procedure COMPUTE_TRAJECTORY_FOR FIRST_HELIOCENTRIC_LEG is

ANGMO_PREF : VECTOR ;

TFI_DAYS : FLOTE ;

TFI_SECS : FLOTE ;

begin

TFI_DAYS :: FLOTE(IDATE(SWBY) - JDATE(DEP))
TFI_SECS :: 86400.0 * TFI_DAYS

ANGMO_PREF := HELIPOS(DEP) * HELIVEL(DEP)

SOLVE_LAMBERT_PROBLEM (HELIPOS(DEP), TFI_SECS, HELIPOS(SWBIO,
ANGMO_PREF,

XFR_HELIVEL(DEP), XFR_HELIVEL(SWBY'), GMSUN);
ANTE_SWBY VINVEC := XFR_HELIVEL(SWBY) - HELIVEL(SWBY)

36

end

FIG. 1.2.30

procedure COMPUTE_TRAJECTORY_FOR_SECOND_HELIOCENTRIC_LEG is

ANGMO PREF : VECTOR ;

TF2_DAYS : FLOTE ;

TF2 SECS : FLOTE ;

begin
_2_DAYS := FLOTE(JDATE(ARR) - JDATE(SWBY))

TF2_SECS := 86400.0 * TF2_DAYS

SOLVE_LAMBERT_PROBLEM (HELI_S(gWBY), TF2_SECS, HELIPOS(ARR),

ANGMO_PREF _ _:::::<:::_
XFR_HELIVEL(SWBY), XF'R_H_ELIVEL(ARR), GM_SUN)_

POST_SWBY_VINVEC := XFR_HELiVEL(SWBY) - HELIVEL(SWB_
end

FIG. 1.2.31

nl

II

I!

i

I

il

i

W

_=

U

=_

The following is the modified vers,on of the above two modules.

Drocedure COMPUTE= TRAJECTORY _ FOR _ FIRST -_AND ._SECOND__ --HELIOCENTRIC_LEG(CATEGORY. :: :

CATEGORY TYPE) is

-- THIS !_ A REUSABLE COMMQN MODULE FO B COMPUTE_TRAJECTORY_FOR_FIRST_HELIOCENTR-IC- LEG

--& COMPUTE_TRAJECTORY_FOR_SECOND_HELIOCENTRIC_LEG --

-- CHANGES HAVE BEEN MADE ACCORDINGLY.

ANGMO_PREF : VECTOR ;

TFI_DAYS : FLOTE ;

begin

if CATEGORY = LEGI then

TFI_DAYS := FLOTE(JDATE(SWBY) - JDATE(DEPl)

ANGMO_PREF := HELIPOS(DEP) * HELIVEL(DEP)

SOLVE LAMBERT_PROBLEM (HELIPOS(DEP), TFI_DAYS* 86400.0, HELIPOS(SWBY),

ANGMO_PREF, XFR_HELIVEL(DEP), XFR_HELIVEL(SWBY), GM_SUN);

ANTE_SWBY_VINVEC := XFR HELIVEL(SWBY) - HELIVEL(SWBY)

W

II

i

I

h
i

11

else

TFI DAYS := FLOTE(JDATE(ARR) - JDATE(SWBY))

ANGMO_PREF := HELIPOS(ARR) * HELIVEL(ARR)

SOLVE_LAMBERT_PROBLEM (HELIPOS(SWBY), TFI_DAYS * 86400.0 , HELIPOS(ARR),

ANGMO_PREF, XFR_HELIVEL(SWBY), XFR_HELIVEL(ARR), GMSUN);

POST_SWBY_VINVEC := XFR HELIVEL(SWBY) - HELIVEL(SWBY)

end if;

end

J

i
m

37
m

IB

/

r_

M

1.2.6 Application BESTIWAY

A few modules in BEST1WAY do not match with any of the modules

in either POWRSWNG or INTRPLAN or IPCAPTUR. These modules

cannot be made reusable because they are unique only to

BEST1WAY.

Therefore the following modules remain same in the application

BEST1WAY.

FIND_BEST_DIRECT_TRANSFER_TRAJECTORY

FIND_BEST_SWING_BY_TRAJECTORY

ISOLATE_UNPOWERED_SWINGBY_SOLUTION

COMPUTE_PLANETOCENTRIQS_GBY_TRAJECTORY_DATA

1.2.7 Application POWRSWNG

As in BEST1WAY, POWRSWNG also has a few unique modules that

are used nowhere else. Since these modules cannot be made

reusable, they remain unchanged within the application itself.

Hence the modules

COMPUTE_LEG I_PLANETOCENTRIQTRAJECTORY_DATA

COMPUTE_LEG2_PLANETOCENTRIC_TRAJECTORY_DATA

COMPUTE_PLANETOCENTRIQSWINGBY_TRAJECTORY_DATA

remain unchanged.

1.2.8 Module DATA_MATRIX_INTEGER

Module DATA_MATRIX_INTEGER is one common module found in all

four applications. This module can be used in all applications without

any modifications. Therefore this module has been shifted into the

package COMMON_MODULES where all the reusable common modules

reside.

1.2.9 Complete ESL object graphs for all four applications.

This section provides full ESL object graphs for all four applications.

38

i

8

2

<

I

u I "_1

I

i ""

i..

I____
I'_ °_ I

II

m

II

II

II

U

m

II

III I

m
l

II

III

i

I

II

m

il

m

II

III

iii

Ill

m

m

J

w

w

m

U

= =

g

_q

m

[]
lid

!3

I

W

z

t _

I

z i

2 2

#'* Io_

I FI{
z

i I

I I

i

[$
I I

o

&

G

,,=

_L ° I

, ii, o'_

!

-itI..... i
1 I

,..,]

!

I

l

I

I
I

ii

z
I

I
i

I

m

I

i

I

mm
I

I

i

t

I

E_

I

i
I

i

I

= =

w

m

w

L

w

w

L

J

F

m

6

2.1 Lessons Learned About the Current ESL Tool

ESL graphs are similar to data flow diagrams, but also have

control flows and two additional constructs: loop and if-then.

ESL does not currently have any configuration management

functions or any verification and validation functions.

Current attributes of the components are insufficient;

particularly, there are no attributes (slots) for providing the

purpose of a component.

There are several important reuse questions that must still be

answered before ESL can be a truly effective reuse system.

What standards should reusable components meet before they

are accepted as ESL components? What makes a component

reusable? As ESL is targeted toward an engineer rather than a

programmer, should not the engineer see mostly domain-

oriented components instead of computer-science oriented

components while searching the library of components?

FOR loops are not supported, only WHILE loops. In the ESL

system, the looping structures are restricted only to WHILE

loops. This is a severe draw back. It was found that, during the

reengineering process, all the FOR loops in the subprograms

had to be changed into WHILE loops. In order to do this, more

modules had to be created (because ESL only connects modules

and does not allow for the direct insertion of even small pieces

of code); Specifically, an unnecessary module had to be created

to increment the iterated value for the new WHILE loop. If

there were ESL facilities to implement FOR loops, this

unnecessary creation of modules could have been avoided.

Another shortcoming found in the ESL graphs was the lack of

directional labelling. For example, there are two directions

emerging from an IF node: THEN and ELSE. The ESL graphs do

not label these directions, causing great confusion.

A few serious syntax errors were found in the generated Ada
code.

m

Ig

U

J

m

Ig

m

J

w

II

m
J

Ill

u

43

g

U

L

E_

w

U

m

W

B

m

U
m

When an existing graph is modified, the user is given two

options when exiting the graph: save or delete. There is no

option to exit the graph without making any permanent

changes to it. Furthermore, if the delete option is selected, the

graph is deleted from the knowledge base, but the associated

drawing file, called "graphname.dwg," is not removed from the

file system.

Drawing files are not always kept consistent with the

knowledge base.

The graph editor panel cannot be resized.

The connector drawing algorithm is too simple and needs to be

improved.

When a node is deleted on the drawing panel, that object still

appears on the "Node on graph" panel.

m

[]
B
W

m
u

i

[]

m

!

44

g

[]

J

m

Ii

i

I
m

IB

ID

IJ

b

u
ml

m

I

II

g

m

g

m!

g

IJ

U

E_J

I

i

I

